RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities

In this chapter, we provide RD Sharma Solutions for Class 9 Solutions Chapter 4 Algebraic Identities for English medium students, Which will very helpful for every student in their exams. Students can download the latest RD Sharma Solutions for Class 9 Solutions Chapter 4 Algebraic Identities pdf, free RD Sharma Solutions for Class 9 Solutions Chapter 4 Algebraic Identities book pdf download. Now you will get step by step solution to each question.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities

RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities Ex 4.1

Question 1.
Evaluate each of the following using identities:
(i) (2x –(frac { 1 }{ x }))2
(ii)  (2x + y) (2x – y)
(iii) (a2b – b2a)2
(iv) (a – 0.1) (a + 0.1)
(v) (1.5.x2 – 0.3y2) (1.5x2 + 0.3y2)
Solution:
RD Sharma Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities

Question 2.
Evaluate each of the following using identities:
(i) (399)2
(ii) (0.98)2
(iii) 991 x 1009
(iv) 117 x 83
Solution:
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities

Question 3.
Simplify each of the following:
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities
Algebraic Identities Class 9 RD Sharma Solutions

Solution:
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities

Question 4.
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities
Solution:
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions
RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities

Question 5.
RD Sharma Book Class 9 Pdf Free Download Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Book Chapter 4 Algebraic Identities

Question 6.
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions
Solution:
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities

Question 7.
If 9x2 + 25y2 = 181 and xy = -6, find the value of 3x + 5y.
Solution:
9x2 + 25y2 = 181, and xy = -6
(3x + 5y)2 = (3x)2 + (5y)2 + 2 x 3x + 5y
⇒ 9X2 + 25y2 + 30xy
= 181 + 30 x (-6)
= 181 – 180 = 1
= (±1 )2
∴ 3x + 5y = ±1

Question 8.
If 2x + 3y = 8 and xy = 2, find the value of 4X2 + 9y2.
Solution:
2x + 3y = 8 and xy = 2
Now, (2x + 3y)2 = (2x)2 + (3y)2 + 2 x 2x x 3y
⇒  (8)2 = 4x2 + 9y2 + 12xy
⇒ 64 = 4X2 + 9y2 + 12 x 2
⇒ 64 = 4x2 + 9y2 + 24
⇒ 4x2 + 9y2 = 64 – 24 = 40
∴ 4x2 + 9y2 = 40

Question 9.
If 3x -7y = 10 and xy = -1, find the value of 9x2 + 49y2
Solution:
3x – 7y = 10, xy = -1
3x -7y= 10
Squaring both sides,
(3x – 7y)2 = (10)2
⇒ (3x)2 + (7y)2 – 2 x 3x x 7y = 100
⇒  9X2 + 49y2 – 42xy = 100
⇒  9x2 + 49y2 – 42(-l) = 100
⇒ 9x2 + 49y2 + 42 = 100
∴ 9x2 + 49y2 = 100 – 42 = 58

Question 10.
Simplify each of the following products:
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities
Solution:
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities
RD Sharma Math Solution Class 9 Chapter 4 Algebraic Identities

Question 11.
RD Sharma Class 9 Questions Chapter 4 Algebraic Identities
Solution:
Maths RD Sharma Class 9 Chapter 4 Algebraic Identities

Question 12.
RD Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities

Question 13.
Simplify each of the following products:
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities
Algebraic Identities Class 9 RD Sharma Solutions

Question 14.
Prove that a2 + b2 + c2 – ab – bc – ca is always non-negative for all values of a, b and c.
Solution:
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities
∵  The given expression is sum of these squares
∴ Its value is always positive Hence the given expression is always non-­negative for all values of a, b and c

Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities Ex 4.2

Question 1.
Write the following in the expanded form:
RD Sharma Class 9 Chapter 4 Algebraic Identities Ex 4.2
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities

Question 2.
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + be + ca.
Solution:
a + b+ c = 0
Squaring both sides,
(a + b + c)2 = 0
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 0
16 + 2(ab + bc + c) = 0
⇒ 2(ab + bc + ca) = -16
⇒  ab + bc + ca =-(frac { 16 }{ 2 }) = -8
∴ ab + bc + ca = -8

Question 3.
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
= 16 + 2 x 10
= 16 + 20 = 36
= (±6)2
∴ a + b + c = ±6

Question 4.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ (9)2 = a2 + b2 + c2 + 2 x 23
⇒ 81= a2 + b2 + c2 + 46
⇒  a2 + b2 + c2 = 81 – 46 = 35
∴ a2 + b2 + c2 = 35

Question 5.
Find the value of 4x2 + y2 + 25z2 + 4xy – 10yz – 20zx when x = 4, y = 3 and z = 2.
Solution:
x = 4, y – 3, z = 2
⇒ 4x2 + y2 + 25z2 + 4xy – 10yz – 20zx
= (2x)2 + (y)2 + (5z)2 + 2 x2 x x y-2 x y x 5z – 2 x 5z x 2x
= (2x + y- 5z)2
= (2 x 4 + 3- 5 x 2)2
= (8 + 3- 10)2
= (11 – 10)2
= (1)2 = 1

Question 6.
Simplify:
(i)  (a + b + c)2 + (a – b + c)2
(ii) (a + b + c)2 –  (a – b + c)2
(iii) (a + b + c)2 +   (a – b + c)2 + (a + b – c)2
(iv) (2x + p – c)2 – (2x – p + c)2
(v) (x2 + y2 – z2)2 – (x2 – y2 + z2)2
Solution:

RD Sharma Class 9 PDF Chapter 4 Algebraic Identities
Algebraic Identities Class 9 RD Sharma Solutions

Question 7.
Simplify each of the following expressions:
Algebraic Identities Class 9 RD Sharma Solutions
Solution:
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities
RD Sharma Book Class 9 Pdf Free Download Chapter 4 Algebraic Identities

Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities Ex 4.3

Question 1.
Find the cube of each of the following binomial expressions:
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities
Solution:
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions
RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities
RD Sharma Book Class 9 Pdf Free Download Chapter 4 Algebraic Identities

Question 2.
If a + b = 10 and ab = 21, find the value of a3 + b3.
Solution:
a + b = 10, ab = 21
Cubing both sides,
(a + b)3 = (10)3
⇒ a3 + 63 + 3ab (a + b) = 1000
⇒  a3 + b3 + 3 x 21 x 10 = 1000
⇒  a3 + b3 + 630 = 1000
⇒  a3 + b3 = 1000 – 630 = 370
∴ a3 + b3 = 370

Question 3.
If a – b = 4 and ab = 21, find the value of a3-b3.
Solution:
a – b = 4, ab= 21
Cubing both sides,
⇒ (a – A)3 = (4)3
⇒ a3 – b3 – 3ab (a – b) = 64
⇒ a3-i3-3×21 x4 = 64
⇒  a3 – 63 – 252 = 64
⇒  a3 – 63 = 64 + 252 =316
∴ a3 – b3 = 316

Question 4.
RD Sharma Class 9 Book Chapter 4 Algebraic Identities
Solution:
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities

Question 5.
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities
Solution:
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities

Question 6.
RD Sharma Math Solution Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Questions Chapter 4 Algebraic Identities
Maths RD Sharma Class 9 Chapter 4 Algebraic Identities

Question 7.
RD Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities

Question 8.
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities
Algebraic Identities Class 9 RD Sharma Solutions

Question 9.
If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 21y3.Solution:
2x + 3y = 13, xy = 6
Cubing both sides,
(2x + 3y)3 = (13)3
⇒ (2x)3 + (3y)3 + 3 x 2x x 3X2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18xy(2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18 x 6 x 13 = 2197
⇒ 8X3 + 27y3 + 1404 = 2197
⇒  8x3 + 27y3 = 2197 – 1404 = 793
∴ 8x3 + 27y3 = 793

Question 10.
If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3.
Solution:
3x – 2y = 11 and xy = 12 Cubing both sides,
(3x – 2y)3 = (11)3
⇒  (3x)3 – (2y)3 – 3 x 3x x 2y(3x – 2y) =1331
⇒  27x3 – 8y3 – 18xy(3x -2y) =1331
⇒   27x3 – 8y3 – 18 x 12 x 11 = 1331
⇒  27x3 – 8y3 – 2376 = 1331
⇒  27X3 – 8y3 = 1331 + 2376 = 3707
∴ 2x3 – 8y3 = 3707

Question 11.
Evaluate each of the following:
(i)  (103)3
(ii) (98)3
(iii) (9.9)3
(iv) (10.4)3
(v) (598)3
(vi) (99)3
Solution:
We know that (a + bf = a3 + b3 + 3ab(a + b) and (a – b)3= a3 – b3 – 3 ab(a – b)
Therefore,
(i)  (103)3 = (100 + 3)3
= (100)3 + (3)3 + 3 x 100 x 3(100 + 3)    {∵ (a + b)3 = a3 + b3 + 3ab(a + b)}
= 1000000 + 27 + 900 x 103
= 1000000 + 27 + 92700
= 1092727
(ii) (98)3 = (100 – 2)3
= (100)3 – (2)3 – 3 x 100 x 2(100 – 2)
= 1000000 – 8 – 600 x 98
= 1000000 – 8 – 58800
= 1000000-58808
= 941192
(iii) (9.9)3 = (10 – 0.1)3
= (10)3 – (0.1)3 – 3 X 10 X 0.1(10 – 0.1)
= 1000 – 0.001 – 3 x 9.9
= 1000 – 0.001 – 29.7
= 1000 – 29.701
= 970.299
(iv) (10.4)3 = (10 + 0.4)3
= (10)3 + (0.4)3 + 3 x 10 x 0.4(10 + 0.4)
= 1000 + 0.064 + 12(10.4)
= 1000 + 0.064 + 124.8 = 1124.864
(v) (598)3 = (600 – 2)3
= (600)3 – (2)3 – 3 x 600 x 2 x (600 – 2)
= 216000000 – 8 – 3600 x 598
= 216000000 – 8 – 2152800
= 216000000 – 2152808
= 213847192
(vi) (99)3 = (100 – 1)3
= (100)3 – (1)3 – 3 x 100 x 1 x (100 – 1)
= 1000000 – 1 – 300 x 99
= 1000000 – 1 – 29700
= 1000000 – 29701
= 970299

Question 12.
Evaluate each of the following:
(i)  1113 – 893
(ii) 463 + 343
(iii) 1043 + 963
(iv) 933 – 1073
Solution:
We know that a3 + b3 = (a + bf – 3ab(a + b) and a3 – b3 = (a – bf + 3 ab(a – b)
(i) 1113 – 893
= (111 – 89)3 + 3 x ill x 89(111 – 89)
= (22)3 + 3 x 111 x 89 x 22
= 10648 + 652014 = 662662
(OR)
(a + b)3 – (a – b)3 = 2(b3 + 3a2b)
= 1113 – 893 = (100 + 11)3 – (100 – 11)3
= 2(113 + 3 x 1002 x 11]
= 2(1331 + 330000]
= 331331 x 2 = 662662
(a + b)3 + (a- b)3 = 2(b3 + 3ab2)
(ii) 463 + 343 = (40 + 6)3 + (40 – 6)3
= 2[(40)3 + 3 x 40 x 62]
= 2[64000 + 3 x 40 x 36]
= 2[64000 + 4320]
= 2 x 68320 = 136640
(iii) 1043 + 963 = (100 + 4)3 + (100 – 96)3
= 2 [a3 + 3 ab2]
= 2[(100)3 + 3 x 100 x (4)2]
= 2[ 1000000 + 300 x 16]
= 2[ 1000000 + 4800]
= 1004800 x 2 = 2009600
(iv) 933 – 1073 = -[(107)3 – (93)3]
= -[(100 + If – (100 – 7)3]
= -2[b3 + 3a2b)]
= -2[(7)3 + 3(100)2 x 7]
= -2(343 + 3 x 10000 x 7]
= -2[343 + 210000]
= -2[210343] = -420686

Question 13.
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities
Solution:
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions

Question 14.
Find the value of 27X3 + 8y3 if
(i) 3x + 2y = 14 and xy = 8
(ii) 3x + 2y = 20 and xy = (frac { 14 }{ 9 })
Solution:
RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities
RD Sharma Class 9 Book Chapter 4 Algebraic Identities

Question 15.
Find the value of 64x3 – 125z3, if 4x – 5z = 16 and xz = 12.
Solution:
4x – 5z = 16, xz = 12
Cubing both sides,
(4x – 5z)3 = (16)3
⇒ (4x)3 – (5y)3 – 3 x 4x x 5z(4x – 5z) = 4096
⇒ 64x3 – 125z3 – 3 x 4 x 5 x xz(4x – 5z) = 4096
⇒  64x3 – 125z3 – 60 x 12 x 16 = 4096
⇒ 64x3 – 125z3 – 11520 = 4096
⇒  64x3 – 125z3 = 4096 + 11520 = 15616

Question 16.
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions
Solution:
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities

Question 17.
Simplify each of the following:
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Math Solution Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 Questions Chapter 4 Algebraic Identities
Maths RD Sharma Class 9 Chapter 4 Algebraic Identities

Question 18.
RD Sharma Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities
Solution:
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities

Question 19.
Algebraic Identities Class 9 RD Sharma Solutions
Solution:
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities

RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

Question 1.
Find the following products:
(i) (3x + 2y) (9X2 – 6xy + Ay2)
(ii) (4x – 5y) (16x2 + 20xy + 25y2)
(iii) (7p4 + q) (49p8 – 7p4q + q2)
RD Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities
Algebraic Identities Class 9 RD Sharma Solutions

Question 2.
If x = 3 and y = -1, find the values of each of the following using in identity:
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities
Solution:
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions
RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities
RD Sharma Class 9 Book Chapter 4 Algebraic Identities

Question 3.
If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.
Solution:
a + b = 10, ab = 16 Squaring,
(a + b)2 = (10)2
⇒ a2 + b2 + lab = 100
⇒ a2 + b2 + 2 x 16 = 100
⇒  a2 + b2 + 32 = 100
∴ a2 + b2 = 100 – 32 = 68
Now, a2 – ab + b2 = a2 + b2 – ab = 68 – 16 = 52
and a2 + ab + b2 = a2 + b2 + ab = 68 + 16 = 84

Question 4.
If a + b = 8 and ab = 6, find the value of a3 + b3.
Solution:
a + b = 8, ab = 6
Cubing both sides,
(a + b)3 = (8)3
⇒ a3 + b3 + 3 ab{a + b) = 512
⇒  a3 + b3 + 3 x 6 x 8 = 512⇒  a3 + b3 + 144 = 512
⇒  a3 + b3 = 512 – 144 = 368
∴ a3 + b3 = 368

Question 5.
If a – b = 6 and ab = 20, find the value of a3-b3.
Solution:
a – b = 6, ab = 20
Cubing both sides,
(a – b)3 = (6)3
⇒  a3 – b3 – 3ab(a – b) = 216
⇒  a3 – b3 – 3 x 20 x 6 = 216
⇒  a3 – b3 – 360 = 216
⇒  a3 -b3 = 216 + 360 = 576
∴ a3 – b3 = 576

Question 6.
If x = -2 and y = 1, by using an identity find the value of the following:
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions
Solution:
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities

RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities Ex 4.5

Question 1.
Find the following products:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
(ii) (4x -3y + 2z) (16x2 + 9y2+ 4z2 + 12xy + 6yz – 8zx)
(iii) (2a – 3b – 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
(iv) (3x -4y + 5z) (9x2 + 16y2 + 25z2 + 12xy- 15zx + 20yz)
Solution:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
= (3x + 2y + 2z) [(3x)2 + (2y)2 + (2z)2 – 3x x 2y + 2y x 2z + 2z x 3x]
= (3x)3 + (2y)3  + (2z)3 – 3 x 3x x 2y x 2z
= 27x3 + 8y3 + 8Z3 – 36xyz
(ii) (4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx)
= (4x -3y + 2z) [(4x)2 + (-3y)2 + (2z)2 – 4x x (-3y + (3y) x (2z) – (2z x 4x)]
= (4x)3 + (-3y)3 + (2z)3 – 3 x 4x x (-3y) x (2z)
= 64x3 – 27y3 + 8z3 + 72xyz
(iii) (2a -3b- 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
= (2a -3b- 2c) [(2a)2 + (3b)2 + (2c)2 – 2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]
= (2a)3 + (3b)3 + (-2c)3 -3x 2a x (-3 b) (-2c)
= 8a3 – 21b3 -8c3 – 36abc
(iv) (3x – 4y + 5z) (9x2 + 16y2 + 25z2 + 12xy – 15zx + 20yz)
= [3x + (-4y) + 5z] [(3x)2 + (-4y)2 + (5z)2 – 3x x (-4y) -(-4y) (5z) – 5z x 3x]
= (3x)3 + (-4y)3 + (5z)3 – 3 x 3x x (-4y) (5z)
= 27x3 – 64y3 + 125z3 + 180xyz

Question 2.
Evaluate:
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities

Question 3.
If x + y + z = 8 and xy + yz+ zx = 20, find the value of x3 + y3 + z3 – 3xyz.
Solution:
We know that
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 -xy -yz – zx)
Now, x + y + z = 8
Squaring, we get
(x + y + z)2 = (8)2
x2 + y2 + z2 + 2(xy + yz + zx) = 64
⇒ x2 + y2 + z2 + 2 x 20 = 64
⇒  x2 + y2 + z2 + 40 = 64
⇒  x2 + y2 + z2 = 64 – 40 = 24
Now,
x3 + y3 + z3 – 3xyz = (x + y + z) [x2 + y2 + z2 – (xy + yz + zx)]
= 8(24 – 20) = 8 x 4 = 32

Question 4.
If a +b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9, ab + be + ca = 26
Squaring, we get
(a + b + c)2 = (9)2
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  a2 + b2 + c2 + 2 x 26 = 81
⇒ a2 + b2 + c2 + 52 = 81
∴  a2 + b2 + c2 = 81 – 52 = 29
Now, a3 + b3 + c3 – 3abc = (a + b + c) [(a2 + b2 + c2 – (ab + bc + ca)]
= 9[29 – 26]
= 9 x 3 = 27

Question 5.
If a + b + c = 9, and a2 + b2 + c2 = 35, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9
Squaring, we get
(a + b + c)2 = (9)2
⇒  a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  35 + 2(ab + bc + ca) = 81
2(ab + bc + ca) = 81 – 35 = 46
∴  ab + bc + ca = (frac { 46 }{ 2 }) = 23
Now, a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)]
= 9[35 – 23] = 9 x 12 = 108

Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions VSAQS

Question 1.
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities
Solution:
Algebraic Identities Class 9 RD Sharma Solutions

Question 2.
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities
Solution:
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions

Question 3.
If a + b = 7 and ab = 12, find the value of a2 + b2.
Solution:
a + b = 7, ab = 12
Squaring both sides,
(a + b)2 = (7)2
⇒  a2 + b2 + 2ab = 49
⇒  a2 + b2 + 2 x 12 = 49
⇒ a2 + b2 + 24 = 49
⇒ a2 + b2 = 49 – 24 = 25
∴ a2 + b2 = 25

Question 4.
If a – b = 5 and ab = 12, find the value of a2 + b2 .
Solution:
a – b = 5, ab = 12
Squaring both sides,
⇒ (a – b)2 = (5)2
⇒  a2 + b2 – 2ab = 25
⇒  a2 + b2 – 2 x 12 = 25
⇒  a2 + b2 – 24 = 25
⇒  a2 + b2 = 25 + 24 = 49
∴ a2 + b2 = 49

Question 5.
RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Book Chapter 4 Algebraic Identities

Question 6.
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions
Solution:
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities

Question 7.
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities
Solution:
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities
RD Sharma Math Solution Class 9 Chapter 4 Algebraic Identities

Algebraic Identities Class 9 RD Sharma Solutions MCQS

Question 1.
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions
Solution:

RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities

Question 2.
RD Sharma Class 9 Book Chapter 4 Algebraic Identities
Solution:
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions

Question 3.
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities
Solution:
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities

Question 4.
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Math Solution Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 Questions Chapter 4 Algebraic Identities

Question 5.
Maths RD Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Chapter 4 Algebraic Identities

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities
Solution:
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities

Question 7.
Algebraic Identities Class 9 RD Sharma Solutions
Solution:
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities

Question 8.
If a + b + c = 9 and  ab + bc + ca = 23, then a2 + b2 + c2 =
(a) 35
(b) 58
(c) 127
(d) none of these
Solution:
a + b + c = 9, ab + bc + ca = 23
Squaring,
(a + b+ c) = (9)2
a2 + b2 + c2 + 2 (ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2 x 23 = 81
⇒  a2 + b2+ c2 + 46 = 81
⇒  a2 + b2+ c2 = 81 – 46 = 35   (a)

Question 9.
(a – b)3 + (b – c)3 + (c – a)3 =
(a) (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
(d) (a -b)(b- c) (c – a)
(c) 3(a – b) (b – c) (c – a)
(d) none of these
Solution:
(a – b)3 + (b- c)3 + (c- a)3
∵ a – b + b – c + c – a = 0
∴ (ab)3 + (b – c)3 + (c – a)3
= 3
(a -b)(b- c) (c – a)        (c)

Question 10.
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities
Solution:
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions

Question 11.
If a – b = -8 and ab = -12 then a3 – b3 =
(a) -244
(b) -240
(c) -224
(d) -260
Solution:
a – b = -8, ab = -12
(a – b)3 = a3 – b3 – 3ab (a – b)
(-8)3 = a3 – b3 – 3 x (-12) (-8)
-512 = a3-b3– 288
a3 – b3 = -512 + 288 = -224      (c)

Question 12.
If the volume of a cuboid is 3x2 – 27, then its possible dimensions are
(a) 3, x2, -27x
(b) 3, x – 3, x + 3
(c) 3, x2, 27x
(d) 3, 3, 3
Solution:
Volume = 3x2 -27 = 3(x2 – 9)
= 3(x + 3) (x – 3)
∴ Dimensions are   = 3, x – 3, x   +  3        (b)

Question 13.
75 x 75 + 2 x 75 x 25    + 25 x 25 is equal to
(a) 10000
(b) 6250
(c) 7500
(d) 3750
Solution:
RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities
RD Sharma Class 9 Book Chapter 4 Algebraic Identities

Question 14.
(x – y) (x + y)(x2 + y2) (x4 + y4) is equal to
(a) x16 – y16
(b) x8 – y8
(c) x8 + y8
(d) x16 + y16
Solution:
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions

Question 15.
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities
Solution:
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities

Question 16.
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Math Solution Class 9 Chapter 4 Algebraic Identities
RD Sharma Class 9 Questions Chapter 4 Algebraic Identities

Question 17.
RD Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities

Question 18.
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 PDF Chapter 4 Algebraic Identities
Algebraic Identities Class 9 RD Sharma Solutions

Question 19.
If a2 + b2 + c2 – ab – bc – ca = 0, then
(a) a + b = c
(b) b + c = a
(c) c + a = b
(d) a = b = c
Solution:
a2 + b2 + c2 – ab – bc – ca = 0
2 {a2 + b2 + c2 – ab – be – ca) = 0 (Multiplying by 2)
⇒  2a2 + 2b2 + 2c2– 2ab – 2bc – 2ca = 0
⇒  a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
(a – b)2 = 0, then a – b = 0
⇒ a = b
Similarly, (b – c)2 = 0, then
b-c = 0
⇒ b = c
and (c – a)2 = 0, then c-a = 0
⇒ c = a
∴ a = b – c           (d)

Question 20.
RD Sharma Class 9 Solution Chapter 4 Algebraic Identities
Solution:
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities

Question 21.
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions
RD Sharma Book Class 9 PDF Free Download Chapter 4 Algebraic Identities
Solution:
Algebraic Identities Problems With Solutions PDF RD Sharma Class 9 Solutions

Question 22.
If a + b + c = 9 and ab + bc + ca = 23, then a3 + b3 + c3 – 3 abc =
(a) 108
(b) 207
(c) 669
(d) 729
Solution:
a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)
Now, a + b + c = 9
Squaring,
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  a2 + b2 + c2 + 2 x 23 = 81
⇒  a2 + b2 + c2 + 46 = 81
⇒  a2 + b2 + c2 = 81 – 46 = 35
Now, a3 + b3 + c3 – 3 abc = (a + b + c) [(a2 + b2 + c2) – (ab + bc + ca)
= 9[35 -23] = 9 x 12= 108                     (a)

Question 23.
RD Sharma Class 9 Maths Book Questions Chapter 4 Algebraic Identities
Solution:
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities
Solution Of Rd Sharma Class 9 Chapter 4 Algebraic Identities

Question 24.
The product (a + b) (a – b) (a2 – ab + b2) (a2 + ab + b2) is equal to
(a) a6 +   b6
(b) a6 – b6
(c) a3 – b3
(d) a3 + b3
Solution:
(a + b) (a – b) (a2 – ab + b2) (a2 + ab +b2)
= (a + b) (a2-ab + b2) (a-b) (a2 + ab + b2)
= (a3 + b3) (a3 – b3)
= (a3)2 – (b3)2 = a6 – b6   (b)

Question 25.
The product (x2 – 1) (x4 + x2 + 1) is equal to
(a) x8 –   1
(b) x8 + 1
(c) x6 –   1
(d) x6 + 1
Solution:
(x2 – 1) (x4 + x2 + 1)
= (x2)3 – (1)3 = x6 – 1                            (c)

Question 26.
RD Sharma Math Solution Class 9 Chapter 4 Algebraic Identities
Solution:
RD Sharma Class 9 Questions Chapter 4 Algebraic Identities

Question 27.
Maths RD Sharma Class 9 Chapter 4 Algebraic Identities
Solution:
Maths RD Sharma Class 9 Chapter 4 Algebraic Identities

All Chapter RD Sharma Solutions For Class 9 Maths

*************************************************

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share alarity.in to your friends.

Leave a Comment

Your email address will not be published. Required fields are marked *