Here you can get solutions of RS Aggarwal Solutions Class 9 Chapter 2 Polynomials. These Solutions are part of RS Aggarwal Solutions Class 9. we have given RS Aggarwal Solutions Class 9 Chapter 2 Polynomials download pdf.

## RS Aggarwal Solutions Class 9 Chapter 2 Polynomials

### Exercise 2A

Question 1:
(i) It is a polynomial, Degree = 5.
(ii) It is polynomial, Degree = 3.
(iii) It is polynomial, Degree = 2.
(iv) It is not a polynomial.
(v) It is not a polynomial.
(vi) It is polynomial, Degree = 108.
(vii) It is not a polynomial.
(viii) It is a polynomial, Degree = 2.
(ix) It is not a polynomial.
(x) It is a polynomial, Degree = 0.
(xi) It is a polynomial, Degree = 0.
(xii) It is a polynomial, Degree = 2.

Question 2:
The degree of a polynomial in one variable is the highest power of the variable.

(i) Degree of 2x – [latex]sqrt { 5 } [/latex] is 1.
(ii) Degree of 3 – x + x2 – 6x3 is 3.
(iii) Degree of 9 is 0.
(iv) Degree of 8x4 – 36x + 5x7 is 7.
(v) Degree of x9 – x5 + 3x10 + 8 is 10.
(vi) Degree of 2 – 3x2 is 2.

Question 3:
(i) Coefficient of x3 in 2x + x2 – 5x3 + x4 is -5
(ii) Coefficient of x in (iii) Coefficient of x2 in (iv) Coefficient of x2 in 3x – 5 is 0.

Question 4:
(i) x27 – 36
(ii) y16
(iii) 5x3 – 8x + 7

Question 5:
(i) It is a quadratic polynomial.
(ii) It is a cubic polynomial.
(iii) It is a quadratic polynomial.
(iv) It is a linear polynomial.
(v) It is a linear polynomial.
(vi) It is a cubic polynomial.

### Exercise 2B

Question 1:
p(x) = 5 – 4x + 2x2
(i) p(0) = 5 – 4(0) + 2(0)2 = 5

(ii) p(3) = 5 – 4(3) + 2(3)2
= 5 – 12 + 18
= 23 – 12 = 11

(iii) p(-2) = 5 – 4(-2) + 2(-2)2
= 5 + 8 + 8 = 21

Question 2:
p(y) = 4 + 3y – y2 + 5y3
(i) p(0) = 4 + 3(0) – 02 + 5(0)3
= 4 + 0 – 0 + 0 = 4

(ii) p(2) = 4 + 3(2) – 22 + 5(2)3
= 4 + 6 – 4 + 40
= 10 – 4 + 40 = 46

(iii) p(-1) = 4 + 3(-1) – (-1)2 + 5(-1)3
= 4 – 3 – 1 – 5 = -5

Question 3:
f(t) = 4t2 – 3t + 6
(i) f(0) = 4(0)2 – 3(0) + 6
= 0 – 0 + 6 = 6

(ii) f(4) = 4(4)2 – 3(4) + 6
= 64 – 12 + 6 = 58

(iii) f(-5) = 4(-5)2 – 3(-5) + 6
= 100 + 15 + 6 = 121

Question 4:
(i) p(x) = 0
⇒ x – 5 = 0
⇒ x = 5
⇒ 5 is the zero of the polynomial p(x).

(ii) q(x) = 0
⇒ x + 4 = 0
⇒ x = -4
⇒ -4 is the zero of the polynomial q(x).

(iii) p(t) = 0
⇒ 2t – 3 = 0
⇒ 2t =3
⇒ t =  [latex s=2]frac { 3 }{ 2 }  [/latex]
⇒ t =  [latex s=2]frac { 3 }{ 2 }  [/latex] is the zero of the polynomial p(t).

(iv) f(x) = 0
⇒ 3x + 1= 0
⇒ 3x = -1
⇒ x =  [latex s=2]frac { -1 }{ 3 }  [/latex]
⇒ x =  [latex s=2]frac { -1 }{ 3 }  [/latex] is the zero of the polynomial f(x).

(v) g(x) = 0
⇒ 5 – 4x = 0
⇒ -4x = -5
⇒ x =  [latex s=2]frac { 5 }{ 4 }  [/latex]
⇒ x =   [latex s=2]frac { 5 }{ 4 }  [/latex] is the zero of the polynomial g(x).

(vi) h(x) = 0
⇒ 6x – 1 = 0
⇒ 6x = 1
⇒ x =  [latex s=2]frac { 1 }{ 6 }  [/latex]
⇒ x =  [latex s=2]frac { 1 }{ 6 }  [/latex] is the zero of the polynomial h(x).

(vii) p(x) = 0
⇒ ax + b = 0
⇒ ax = -b
⇒ x =  [latex s=2]frac { -b }{ a }  [/latex]
⇒ x =  [latex s=2]frac { -b }{ a }  [/latex]is the zero of the polynomial p(x)

(viii) q(x) = 0
⇒ 4x = 0
⇒ x = 0
⇒ 0 is the zero of the polynomial q(x).

(ix) p(x) = 0
⇒ ax = 0
⇒ x = 0
⇒ 0 is the zero of the polynomial p(x).

Question 5:
(i) p(x) = x – 4
Then, p(4) = 4 – 4 = 0
⇒ 4 is a zero of the polynomial p(x).

(ii) p(x) = x – 3
Then, p(-3) = -3 – 3 = -6
⇒ -3 is not a zero of the polynomial p(x).

(iii) p(y) = 2y + 1
Then, ⇒ [latex s=2]frac { -1 }{ 2 }  [/latex] is a zero of the polynomial p(y).

(iv) p(x) = 2 – 5x
Then, ⇒ [latex s=2]frac { 2 }{ 5 }  [/latex] is a zero of the polynomial p(x).

(v) p(x) = (x – 1) (x – 2)
Then, p(1) = (1 – 1) (1 – 2) = 0 -1 = 0
⇒ 1 is a zero of the polynomial p(x).
Also, p(2) = (2 – 1)(2 – 2) = 1 0 = 0
⇒ 2 is a zero of the polynomial p(x).
Hence, 1 and 2 are the zeroes of the polynomial p(x).

(vi) p(x) = x2 – 3x.
Then, p(0) = 02 – 3(0) = 0
p(3) = (32) – 3(3) = 9 – 9 = 0
⇒ 0 and 3 are the zeroes of the polynomial p(x).

(vii) p(x) = x2 + x – 6
Then, p(2) = 22 + 2 – 6
= 4 + 2 – 6
= 6 – 6 = 0
⇒ 2 is a zero of the polynomial p(x).
Also, p(-3) = (-3)2 – 3 – 6
= 9 – 3 – 6 = 0
⇒ -3 is a zero of the polynomial p(x).
Hence, 2 and -3 are the zeroes of the polynomial p(x).

### Exercise 2C

Question 1:
f(x) = x3 – 6x2 + 9x + 3
Now, x – 1 = 0  ⇒ x = 1
By the remainder theorem, we know that when f(x) is divided by (x – 1) the remainder is f(1).
Now, f(1) = 13 – 6 × 12 + 9 × 1 + 3
= 1 – 6 + 9 + 3
= 13 – 6 = 7
∴ The required remainder is 7.

Question 2:
f(x) = (2x3 – 5x2 + 9x – 8)
Now, x – 3 = 0  ⇒ x = 3
By the remainder theorem, we know that when f(x) is divided by (x – 3) the remainder is f(3).
Now, f(3) = 2 × 33 – 5 × 32 + 9 × 3 – 8
= 54 – 45 + 27 – 8
= 81 – 53 = 28
∴ The required remainder is 28.

Question 3:
f(x) = (3x4 – 6x2 – 8x + 2)
Now, x – 2 = 0  ⇒ x = 2
By the remainder theorem, we know that when f(x) is divided by (x – 2) the remainder is f(2).
Now, f(2) = 3 × 24 – 6 × 22 – 8 × 2 + 2
= 48 – 24 – 16 + 2
= 50 – 40 = 10
∴ The required remainder is 10.

Question 4:
f(x) = x3 – 7x2 + 6x + 4
Now, x – 6 = 0  ⇒ x = 6
By the remainder theorem, we know that when f(x) is divide by (x – 6) the remainder is f(6)
Now, f(6) = 63 – 7 × 62 + 6 × 6 + 4
= 216 – 252 + 36 + 4
= 256 – 252 = 4
∴ The required remainder is 4.

Question 5:
f(x) = (x3 – 6x2 + 13x + 60)
Now, x + 2 = 0  ⇒ x = -2
By the remainder the theorem, we know that when f(x) is divide by (x + 2) the remainder is f(-2).
Now, f(-2) = (-2)3 – 6(-2)2 + 13(-2) + 60
= -8 – 24 – 26 + 60
= -58 + 60 = 2
∴ The required remainder is 2.

Question 6:
f(x) = (2x4 + 6x3 + 2x2 + x – 8)
Now, x + 3 = 0  ⇒ x = -3
By the remainder the theorem, we know that when f(x) is divide by (x + 3) the remainder is f(-3).
f(-3) = 2(-3)4 + 6(-3)3 + 2(-3)2 – 3 – 8
= 162 – 162 + 18 – 3 – 8
= 18 – 11 = 7
∴ The required remainder is 7.

Question 7:
f(x) = (4x3 – 12x2 + 11x – 5)
Now, 2x – 1 = 0  ⇒ x =  [latex s=2]frac { 1 }{ 2 }  [/latex]
By the remainder theorem, we know that when f(x) is divided by (2x – 1) the remainder is  [latex s=2]fleft( frac { 1 }{ 2 }  right)     [/latex] ∴ The required remainder is -2.

Question 8:
f(x) = (81x4 + 54x3 – 9x2 – 3x + 2)
Now, 3x + 2 = 0  ⇒ x =  [latex s=2]frac { -2 }{ 3 }  [/latex]
By the remainder theorem, we know that when f(x) is divided by (3x+ 2) the remainder is  [latex s=2]fleft( frac { -2 }{ 3 }  right)     [/latex] ∴ The required remainder is 0.

Question 9:
f(x) = (x3 – ax2 + 2x – a)
Now, x – a = 0 x  ⇒ = a
By the remainder theorem, we know that when f(x) is divided by (x – a) the remainder is f(a)
Now, f(a) = a3 – a a2 + 2 a – a
= a3 – a3 + 2a – a
= a
∴ The required remainder is a.

Question 10:
Let f(x) = ax3 + 3x2 – 3
and g(x) = 2x3 – 5x + a
∴ f(4) = a × 43 + 3 × 42 – 3
= 64a + 48 – 3
= 64a + 45
g(4) = 2 × 43 – 5 × 4 + a
= 128 – 20 + a
= 108 + a
It is given that:
f(4) = g(4)
⇒ 64a + 45 = 108 + a
⇒ 64a – a = 108 – 45
⇒ 63a = 63
⇒ a =  [latex]frac { 63 }{ 63 }  [/latex]  = 1
∴ The value of a is 1.

Question 11:
Let f(x) = (x4 – 2x3 + 3x2 – ax + b)
∴ From the given information,
f(1) = 14 – 2(1)3 + 3(1)2 – a (1 ) + b = 5
⇒ 1 – 2 + 3 – a + b = 5
⇒ 2 – a + b = 5 ….(i)
And,
f(-1) = (-1)4 – 2(-1)3 + 3(-1)2 – a(-1) + b = 19
⇒ 1 + 2 + 3 + a + b = 19
⇒ 6 + a + b = 19 ….(ii)
Adding (i) and (ii), we get
⇒ 8 + 2b = 24
⇒ 2b = 24 – 8 = 16
⇒ b =  [latex]frac { 16 }{ 2 }  [/latex]
Substituting the value of b = 8 in (i), we get
2 – a + 8 = 5
⇒ -a + 10 = 5
⇒ -a = -10 + 5
⇒ -a = -5
⇒ a = 5
∴ a = 5 and b = 8
f(x) = x4 – 2x3 + 3x2 – ax + b
= x4 – 2x3 + 3x2 – 5x + 8
∴ f(2) = (2)4 – 2(2)3 + 3(2)2 – 5(2) + 8
= 16 – 16 + 12 – 10 + 8
= 20 – 10 = 10
∴ The required remainder is 10.

### Exercise 2D

Question 1:
f(x) = (x3 – 8)
By the Factor Theorem, (x – 2) will be a factor of f(x) if f(2) = 0.
Here, f(2) = (2)3 – 8
= 8 – 8 = 0
∴ (x – 2) is a factor of (x3 – 8).

Question 2:
f(x) = (2x3 + 7x2 – 24x – 45)
By the Factor Theorem, (x – 3) will be a factor of f(x) if f(3) = 0.
Here, f(3) = 2 × 33 + 7 × 32 – 24 × 3 – 45
= 54 + 63 – 72 – 45
= 117 – 117 = 0
∴ (x – 3) is a factor of (2x3 + 7x2 – 24x – 45).

Question 3:
f(x) = (2x4 + 9x3 + 6x2 – 11x – 6)
By the Factor Theorem, (x – 1) will be a factor of f(x) if f(1) = 0.
Here, f(1) = 2 × 14 + 9 × 13 + 6 × 12 – 11 × 1 – 6
= 2 + 9 + 6 – 11 – 6
= 17 – 17 = 0
∴ (x – 1) is factor of (2x4 + 9x3 + 6x2 – 11x – 6).

Question 4:
f(x) = (x4 – x2 – 12)
By the Factor Theorem, (x + 2) will be a factor of f(x) if f(-2) = 0.
Here, f(-2) = (-2)4 – (-2)2 – 12
= 16 – 4 – 12
= 16 – 16 = 0
∴ (x + 2) is a factor of (x4 – x2 – 12).

Question 5:
f(x) = 2x3 + 9x2 – 11x – 30
By the Factor Theorem, (x + 5) will be a factor of f(x) if f(-5) = 0.
Here, f(-5) = 2(-5)3 + 9(-5)2 – 11(-5) – 30
= -250 + 225 + 55 – 30
= -280 + 280 = 0
∴ (x + 5) is a factor of (2x3 + 9x2 – 11x – 30).

Question 6:
f(x) = (2x4 + x3 – 8x2 – x + 6)
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0.
Here, 2x – 3 = 0  ⇒ x =  [latex]frac { 3 }{ 2 }  [/latex] ∴ (2x – 3) is a factor of (2x4 + x3 – 8x2 – x + 6).

Question 7:
f(x) = (7x2 – [latex]4sqrt { 2 }         [/latex] x – 6 = 0)
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0.
Here, = 14 – 8 – 6
= 14 – 14 = 0
∴ (x – [latex]sqrt { 2 }    [/latex]) is a factor of (7 – [latex]4sqrt { 2 }         [/latex] x – 6 = 0).

Question 8:

f(x) =   ([latex]4sqrt { 2 }         [/latex]x2  + 5x +[latex]sqrt { 2 }    [/latex] = 0)
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0.
Here, ∴ (x + [latex]sqrt { 2 }    [/latex]) is a factor of ([latex]4sqrt { 2 }         [/latex]x2  + 5x +[latex]sqrt { 2 }    [/latex] = 0).

Question 9:
f(x) = (2x3 + 9x2 + x + k)
x – 1 = 0  ⇒ x = 1
∴ f(1) = 2 × 13 + 9 × 12 + 1 + k
= 2 + 9 + 1 + k
= 12 + k
Given that (x – 1) is a factor of f(x).
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0 and therefore f(1) = 0.
⇒ f(1) = 12 + k = 0
⇒ k = -12.

Question 10:
f(x) = (2x3 – 3x2 – 18x + a)
x – 4 = 0  ⇒ x = 4
∴ f(4) = 2(4)3 – 3(4)2 – 18 × 4 + a
= 128 – 48 – 72 + a
= 128 – 120 + a
= 8 + a
Given that (x – 4) is a factor of f(x).
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0 and therefore f(4) = 0.
⇒ f(4) = 8 + a = 0
⇒ a = -8

Question 11:
f(x) = x4 – x3 – 11x2 – x + a
x + 3 = 0  ⇒ x = -3
∴ f(-3) = (-3)4 – (-3)3 -11 (-3)2 – (-3) + a
= 81 + 27 – 11 × 9 + 3 + a
= 81 + 27 – 99 + 3 + a
= 111 – 99 + a
= 12 + a
Given that f(x) is divisible by (x + 3), that is (x+3) is a factor of f(x).
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0 and therefore f(-3) = 0.
⇒ f(-3) = 12 + a =0
⇒ a = -12.

Question 12:
f(x) = (2x3 + ax2 + 11x + a + 3)
2x – 1 = 0  ⇒ x =  [latex s=2]frac { 1 }{ 2 }  [/latex]
Given that f(x) is exactly divisible by (2x – 1), that is (2x – 1) is a factor of f(x).
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0
and therefore [latex s=2]fleft( frac { 1 }{ 2 }  right)     [/latex] ≠ 0.
Therefore, we have ∴ The value of a = -7.

Question 13:
Let f(x) = (x3 – 10x2 + ax + b), then by factor theorem
(x – 1) and (x – 2) will be factors of f(x) if f(1) = 0 and f(2) = 0.
f(1) = 13 – 10 12 + a 1 + b = 0
⇒ 1 – 10 + a + b = 0
⇒ a + b = 9 ….(i)
And f(2) = 23 – 10 22 + a 2 + b = 0
⇒ 8 – 40 + 2a + b = 0
⇒ 2a + b = 32 ….(ii)
Subtracting (i) from (ii), we get
a = 23
Substituting the value of a = 23 in (i), we get
⇒ 23 + b = 9
⇒ b = 9 – 23
⇒ b = -14
∴ a = 23 and b = -14.

Question 14:
Let f(x) = (x4 + ax3 – 7x2 – 8x + b)
Now, x + 2 = 0 x = -2 and x + 3 = 0 x = -3
By factor theorem, (x + 2) and (x + 3) will be factors of f(x) if f(-2) = 0 and f(-3) = 0
∴ f(-2) = (-2)4 + a (-2)3 – 7 (-2)2 – 8 (-2) + b = 0
⇒ 16 – 8a – 28 + 16 + b = 0
⇒ -8a + b = -4
⇒ 8a – b = 4 ….(i)
And, f(-3) = (-3)4 + a (-3)3 – 7 (-3)2 – 8 (-3) + b = 0
⇒ 81 – 27a – 63 + 24 + b = 0
⇒ -27a + b = -42
⇒ 27a – b = 42 ….(ii)
Subtracting (i) from (ii), we get,
19a = 38
So, a = 2
Substituting the value of a = 2 in (i), we get
8(2) – b = 4
⇒ 16 – b = 4
⇒ -b = -16 + 4
⇒ -b = -12
⇒ b = 12
∴ a = 2 and b = 12.

Question 15:
Let f(x) = x3 – 3x2 – 13x + 15
Now, x2 + 2x – 3 = x2 + 3x – x – 3
= x (x + 3) – 1 (x + 3)
= (x + 3) (x – 1)
Thus, f(x) will be exactly divisible by x2 + 2x – 3 = (x + 3) (x – 1) if (x + 3) and (x – 1) are both factors of f(x), so by factor theorem, we should have f(-3) = 0 and f(1) = 0.
Now, f(-3) = (-3)3 – 3 (-3)2 – 13 (-3) + 15
= -27 – 3 × 9 + 39 + 15
= -27 – 27 + 39 + 15
= -54 + 54 = 0
And, f(1) = 13 – 3 × 12 – 13 × 1 + 15
= 1 – 3 – 13 + 15
= 16 – 16 = 0
∴ f(-3) = 0 and f(1) = 0
So, x2 + 2x – 3 divides f(x) exactly.

Question 16:
Let f(x) = (x3 + ax2 + bx + 6)
Now, by remainder theorem, f(x) when divided by (x – 3) will leave a remainder as f(3).
So, f(3) = 33 + a × 32 + b × 3 + 6 = 3
⇒ 27 + 9a + 3b + 6 = 3
⇒ 9a + 3b + 33 = 3
⇒ 9a + 3b = 3 – 33
⇒ 9a + 3b = -30
⇒ 3a + b = -10 ….(i)
Given that (x – 2) is a factor of f(x).
By the Factor Theorem, (x – a) will be a factor of f(x) if f(a) = 0 and therefore f(2) = 0.
f(2) =  23 + a × 22 + b × 2 + 6 = 0
⇒ 8 + 4a+ 2b + 6 = 0
⇒ 4a + 2b = -14
⇒ 2a + b = -7 ….(ii)
Subtracting (ii) from (i), we get,
⇒ a = -3
Substituting the value of a = -3 in (i), we get,
⇒ 3(-3) + b = -10
⇒ -9 + b = -10
⇒ b = -10 + 9
⇒ b = -1
∴ a = -3 and b = -1.

### Exercise 2E

Question 1:
9x2 + 12xy = 3x (3x + 4y)

Question 2:
18x2y – 24xyz = 6xy (3x – 4z)

Question 3:
27a3b3 – 45a4b2 = 9a3b2 (3b – 5a)

Question 4:
2a (x + y) – 3b (x + y) = (x + y) (2a – 3b)

Question 5:
2x (p2 + q2) + 4y (p2 + q2)
= (2x + 4y) (p2 + q2)
= 2(x+ 2y) (p2 + q2)

Question 6:
x (a – 5) + y (5 – a)
= x (a – 5) + y (-1) (a – 5)
= (x – y) (a – 5)

Question 7:
4 (a + b) – 6 (a + b)2
= (a + b) [4 – 6 (a + b)]
= 2 (a + b) (2 – 3a – 3b)
= 2 (a + b) (2 – 3a – 3b)

Question 8:
8 (3a – 2b)2 – 10 (3a – 2b)
= (3a – 2b) [8(3a – 2b) – 10]
= (3a – 2b) 2[4 (3a – 2b) – 5]
= 2 (3a – 2b) (12 a – 8b – 5)

Question 9:
x (x + y)3 – 3x2y (x + y)
= x (x + y) [(x + y)2 – 3xy]
= x (x + y) (x2 + y2 + 2xy – 3xy)
= x (x + y) (x2 + y2 – xy)

Question 10:
x3 + 2x2 + 5x + 10
= x2 (x + 2) + 5 (x + 2)
= (x2 + 5) (x + 2)

Question 11:
x2 + xy – 2xz – 2yz
= x (x + y) – 2z (x + y)
= (x+ y) (x – 2z)

Question 12:
a3b – a2b + 5ab – 5b
= a2b (a – 1) + 5b (a – 1)
= (a – 1) (a2b + 5b)
= (a – 1) b (a2 + 5)
= b (a – 1) (a2 + 5)

Question 13:
8 – 4a – 2a3 + a4
= 4(2 – a) – a3 (2 – a)
= (2 – a) (4 – a3)

Question 14:
x3 – 2x2y + 3xy2 – 6y3
= x2 (x – 2y) + 3y2 (x – 2y)
= (x – 2y) (x2 + 3y2)

Question 15:
px + pq – 5q – 5x
= p(x + q) – 5 (q + x)
= (x + q) (p – 5)

Question 16:
x2 – xy + y – x
= x (x – y) – 1 (x – y)
= (x – y) (x – 1)

Question 17:
(3a – 1)2 – 6a + 2
= (3a – 1)2 – 2 (3a – 1)
= (3a – 1) [(3a – 1) – 2]
= (3a – 1) (3a – 3)
= 3(3a – 1) (a – 1)

Question 18:
(2x – 3)2 – 8x + 12
= (2x – 3)2 – 4 (2x – 3)
= (2x – 3) (2x – 3 – 4)
= (2x – 3) (2x – 7)

Question 19:
a3 + a – 3a2 – 3
= a(a2 + 1) – 3 (a2 + 1)
= (a – 3) (a2 + 1)

Question 20:
3ax – 6ay – 8by + 4bx
= 3a (x – 2y) + 4b (x – 2y)
= (x – 2y) (3a + 4b)

Question 21:
abx2 + a2x + b2x +ab
= ax (bx + a) + b (bx + a)
= (bx + a) (ax + b)

Question 22:
x3 – x2 + ax + x – a – 1
= x3 – x2 + ax – a + x – 1
= x2 (x – 1) + a (x – 1) + 1 (x – 1)
= (x – 1) (x2 + a + 1)

Question 23:
2x + 4y – 8xy – 1
= 2x – 1 – 8xy + 4y
= (2x – 1) – 4y (2x – 1)
= (2x – 1) (1 – 4y)

Question 24:
ab (x2 + y2) – xy (a2 + b2)
= abx2 + aby2 – a2xy – b2xy
= abx2 – a2xy + aby2 – b2xy
= ax (bx – ay) + by(ay – bx)
= (bx – ay) (ax – by)

Question 25:
a2 + ab (b + 1) + b3
= a2 + ab2 + ab + b3
= a2 + ab + ab2 + b3
= a (a + b) + b2 (a + b)
= (a + b) (a + b2)

Question 26:
a3 + ab (1 – 2a) – 2b2
= a3 + ab – 2a2b – 2b2
= a (a2 + b) – 2b (a2 + b)
= (a2 + b) (a – 2b)

Question 27:
2a2 + bc – 2ab – ac
= 2a2 – 2ab – ac + bc
= 2a (a – b) – c (a – b)
= (a – b) (2a – c)

Question 28:
(ax + by)2 + (bx – ay)2
= a2x2 + b2y2 + 2abxy + b2x2 + a2y2 – 2abxy
= a2x2 + b2y2 + b2x2 + a2y2
= a2x2 + b2x2 + b2y2 + a2y2
= x2 (a2 + b2) + y2(a2 + b2)
= (a2 + b2) (x2 + y2)

Question 29:
a (a + b – c) – bc
= a2 + ab – ac – bc
= a(a + b) – c (a + b)
= (a – c) (a + b)

Question 30:
a(a – 2b – c) + 2bc
= a2 – 2ab – ac + 2bc
= a (a – 2b) – c (a – 2b)
= (a – 2b) (a – c)

Question 31:
a2x2 + (ax2 + 1)x + a
= a2x2 + ax3 + x + a
= ax2 (a + x) + 1 (x + a)
= (ax2 + 1) (a + x)

Question 32:
ab (x2 + 1) + x (a2 + b2)
= abx2 + ab + a2x + b2x
= abx2 + a2x + ab + b2x
= ax (bx + a) + b (bx + a)
= (bx + a) (ax + b)

Question 33:
x2 – (a + b) x + ab
= x2 – ax – bx + ab
= x (x – a) – b(x – a)
= (x – a) (x – b)

Question 34: ### Exercise 2F

Question 1:
25x2 – 64y2
= (5x)2 – (8y)2
= (5x + 8y) (5x – 8y) Question 2:
100 – 9x2
= (10)2 – (3x)2
= (10 + 3x) (10 – 3x) Question 3:
5x2 – 7y2 Question 4:
(3x + 5y)2 – 4z2
= (3x + 5y)2 – (2z)2
= (3x + 5y + 2z) (3x + 5y – 2z) Question 5:
150 – 6x2
= 6 (25 – x2)
= 6 (52 – x2)
= 6 (5 + x) (5 – x) Question 6:
20x2 – 45
= 5(4x2 – 9)
= 5 [(2x)2 – (3)2]
= 5 (2x + 3) (2x – 3) Question 7:
3x3 – 48x
= 3x (x2 – 16)
= 3x [(x)2 – (4)2]
= 3x (x + 4) (x – 4) Question 8:
2 – 50x2
= 2 (1 – 25x2)
= 2 [(1)2 – (5x)2]
= 2 (1 + 5x) (1 – 5x) Question 9:
27a2 – 48b2
= 3 (9a2 – 16b2)
= 3 [(3a)2 – (4b)2]
= 3(3a + 4b) (3a – 4b) Question 10:
x – 64x3
= x (1 – 64x2)
= x[(1)2 – (8x)2]
= x (1 + 8x) (1 – 8x) Question 11:
8ab2 – 18a3
= 2a (4b2 – 9a2)
= 2a [(2b)2 – (3a)2]
= 2a (2b + 3a) (2b – 3a) Question 12:
3a3b – 243ab3
= 3ab (a2 – 81 b2)
= 3ab [(a)2 – (9b)2]
= 3ab (a + 9b) (a – 9b) Question 13:
(a + b)3 – a – b
= (a + b)3 – (a + b)
= (a + b) [(a + b)2 – 12]
= (a + b) (a + b + 1) (a + b – 1) Question 14:
108a2 – 3(b – c)2
= 3 [(36a2 – (b -c)2]
= 3 [(6a)2 – (b – c)2]
= 3 (6a + b – c) (6a – b + c) Question 15:
x3 – 5x2 – x + 5
= x2 (x – 5) – 1 (x – 5)
= (x – 5) (x2 – 1)
= (x – 5) (x + 1) (x – 1) Question 16:
a2 + 2ab + b2 – 9c2
= (a + b)2 – (3c)2
= (a + b + 3c) (a + b – 3c) Question 17:
9 – a2 + 2ab – b2
= 9 – (a2 – 2ab + b2)
= 32 – (a – b)2
= (3 + a – b) (3 – a + b) Question 18:
a2 – 4ac + 4c2 – b2
= a2 – 4ac + 4c2 – b2
= a2 – 2 a 2c + (2c)2 – b2
= (a – 2c)2 – b2
= (a – 2c + b) (a – 2c – b) Question 19:
9a2 + 3a – 8b – 64b2
= 9a2 – 64b2 + 3a – 8b
= (3a)2 – (8b)2 + (3a – 8b)
= (3a + 8b) (3a – 8b) + (3a – 8b) = (3a – 8b) (3a + 8b + 1)

Question 20:
x2 – y2 + 6y – 9
= x2 – (y2 – 6y + 9)
= x2 – (y2 – 2 y 3 + 32)
= x2 – (y – 3)2
= [x + (y – 3)] [x – (y – 3)] = (x + y – 3) (x – y + 3)

Question 21:
4x2 – 9y2 – 2x – 3y
= (2x)2 – (3y)2 – (2x + 3y)
= (2x + 3y) (2x – 3y) – (2x + 3y) = (2x + 3y) (2x – 3y – 1)

Question 22:
x4 – 1
= (x2 )2 – 12
= (x2 + 1) (x2 – 1) = (x2 + 1) (x + 1) (x – 1) Question 23:
a – b – a2 + b2
= (a – b) – (a2 – b2)
= (a – b) – (a – b) (a + b) = (a – b) (1 – a – b)

Question 24:
x4 – 625
= (x2)2 – (25)2
= (x2 + 25) (x2 – 25) = (x2 + 25) (x2 – 52)
= (x2 + 25) (x + 5) (x – 5) ### Exercise 2G

Question 1:
x2 + 11x + 30
= x2 + 6x + 5x + 30
= x (x + 6) + 5 (x + 6)
= (x + 6) (x + 5).

Question 2:
x2 + 18x + 32
= x2 + 16x + 2x + 32
= x (x + 16) + 2 (x + 16)
= (x + 16) (x + 2).

Question 3:
x2 + 7x – 18
= x2 + 9x – 2x – 18
= x (x + 9) – 2 (x + 9)
= (x + 9) (x – 2).

Question 4:
x2 + 5x – 6
= x2 + 6x – x – 6
= x (x + 6) – 1 (x+ 6)
= (x + 6) (x – 1).

Question 5:
y2 – 4y + 3
= y2 – 3y – y + 3
= y (y – 3) – 1 (y – 3)
= (y – 3) (y – 1).

Question 6:
x2 – 21x + 108
= x2 – 12x – 9x + 108
= x (x – 12) – 9 (x – 12)
= (x – 12) (x – 9).

Question 7:
x2 – 11x – 80
= x2 – 16x + 5x – 80
= x (x – 16) + 5 (x – 16)
= (x – 16) (x + 5).

Question 8:
x2 – x – 156
= x2 – 13x + 12x – 156
= x (x – 13) + 12 (x – 13)
= (x – 13) (x + 12).

Question 9:
z2 – 32z – 105
= z2 – 35z + 3z – 105
= z (z – 35) + 3 (z – 35)
= (z – 35) (z + 3)

Question 10:
40 + 3x – x2
= 40 + 8x – 5x – x2
= 8 (5 + x) -x (5 + x)
= (5 + x) (8 – x).

Question 11:
6 – x – x2
= 6 + 2x – 3x – x2
= 2(3 + x) – x (3 + x)
= (3 + x) (2 – x).

Question 12:
7x2 + 49x + 84
= 7(x2 + 7x + 12)
= 7 [x2 + 4x + 3x + 12]
= 7 [x (x + 4) + 3 (x + 4)]
= 7 (x + 4) (x + 3).

Question 13:
m2 + 17mn – 84n2
= m2 + 21mn – 4mn – 84n2
= m (m + 21n) – 4n (m + 21n)
= (m + 21n) (m – 4n).

Question 14:
5x2 + 16x + 3
= 5x2 + 15x + x + 3
= 5x (x + 3) + 1 (x + 3)
= (5x + 1) (x + 3).

Question 15:
6x2 + 17x + 12
= 6x2 + 9x + 8x + 12
= 3x (2x + 3) + 4(2x + 3)
= (2x + 3) (3x + 4).

Question 16:
9x2 + 18x + 8
= 9x2 + 12x + 6x + 8
= 3x (3x+ 4) +2 (3x + 4)
= (3x + 4) (3x + 2).

Question 17:
14x2 + 9x + 1
= 14x2 + 7x + 2x + 1
= 7x (2x + 1) + (2x + 1)
= (7x + 1) (2x + 1).

Question 18:
2x2 + 3x – 90
= 2x2 – 12x + 15x – 90
= 2x (x – 6) + 15 (x – 6)
= (x – 6) (2x + 15).

Question 19:
2x2 + 11x – 21
= 2x2 + 14x – 3x – 21
= 2x (x + 7) – 3 (x + 7)
= (x + 7) (2x – 3).

Question 20:
3x2 – 14x + 8
= 3x2 – 12x – 2x +8
= 3x (x – 4) – 2(x – 4)
= (x – 4) (3x – 2).

Question 21:
18x2 + 3x – 10
= 18x2 – 12x + 15x – 10
= 6x (3x – 2) + 5 (3x – 2)
= (6x + 5) (3x – 2).

Question 22:
15x2 + 2x – 8
= 15x2 – 10x + 12x – 8
= 5x (3x – 2) + 4 (3x – 2)
= (3x – 2) (5x + 4).

Question 23:
6x2 + 11x – 10
= 6x2 + 15x – 4x – 10
= 3x (2x + 5) – 2(2x+ 5)
= (2x + 5) (3x – 2).

Question 24:
30x2 + 7x – 15
= 30x2 – 18x + 25x – 15
= 6x (5x – 3) + 5 (5x- 3)
= (5x – 3) (6x + 5).

Question 25:
24x2 – 41x + 12
= 24x2 – 32x – 9x + 12
= 8x (3x – 4) – 3 (3x – 4)
= (3x – 4) (8x – 3).

Question 26:
2x2 – 7x – 15
= 2x2 – 10x + 3x – 15
= 2x (x – 5) + 3 (x – 5)
= (x – 5) (2x + 3).

Question 27:
6x2 – 5x – 21
= 6x2 + 9x – 14x – 21
= 3x (2x + 3) – 7 (2x + 3)
= (3x – 7) (2x + 3).

Question 28:
10x2 – 9x – 7
= 10x2 + 5x – 14x – 7
= 5x (2x + 1) – 7 (2x+ 1)
= (2x + 1) (5x – 7).

Question 29:
5x2 – 16x – 21
= 5x2 + 5x – 21x – 21
= 5x (x + 1) -21 (x + 1)
= (x + 1) (5x – 21).

Question 30:
2x2 – x – 21
= 2x2 + 6x – 7x – 21
= 2x (x + 3) – 7 (x + 3)
= (x + 3) (2x – 7).

Question 31:
15x2 – x – 28
= 15x2 + 20x – 21x – 28
= 5x (3x + 4) – 7 (3x + 4)
= (3x + 4) (5x – 7).

Question 32:
8a2 – 27ab + 9b2
= 8a2 – 24ab – 3ab + 9b2
= 8a (a – 3b) – 3b (a – 3b)
= (a – 3b) (8a – 3b).

Question 33:
5x2 + 33xy – 14y2
= 5x2 + 35xy – 2xy – 14y2
= 5x (x + 7y) – 2y (x + 7y)
= (x + 7y) (5x – 2y).

Question 34:
3x3 – x2 – 10x
= x (3x2 – x – 10)
= x [3x2 – 6x + 5x – 10]
= x [3x (x – 2) + 5 (x – 2)]
= x (x – 2) (3x + 5).

Question 35: Question 36: Question 37: Question 38: Question 39: Question 40: Question 41: Question 42: Question 43: Question 44: Question 45:
Let x + y = z
Then, 2 (x + y)2 – 9 (x + y) – 5 Now, replacing z by (x + y), we get Question 46:
Let 2a – b = c
Then, 9 (2a – b)2 – 4 (2a – b) -13 Now, replacing c by (2a – b) , we get
9 (2a – b)2 – 4 (2a – b) – 13 Question 47:
Let x – 2y = z
Then, 7 (x – 2y)2 – 25 (x – 2y) + 12 Now replace z by (x – 2y), we get
7 (x – 2y)2 – 25 (x – 2y) + 12 Question 48:
Let x2 = y
Then, 4x4 + 7x2 – 2 Now replacing y by x2, we get ### Exercise 2H

Question 1:
We know:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
(i) (a + 2b + 5c)2
= (a)2 + (2b)2 + (5c)2 + 2(a) (2b) + 2 (2b) (5c) + 2(5c) (a)
= a2 + 4b2 + 25c2 + 4ab + 20bc + 10ac
(ii) (2a – b + c)2
= (2a)2 + (-b)2 + (c)2 + 2 (2a) (-b) + 2(-b) (c) + 2 (c) (2a)
= 4a2 + b2 + c2 – 4ab – 2bc + 4ac.
(iii) (a – 2b – 3c)2
= (a)2 + (-2b)2 + (-3c)2 + 2(a) (-2b) + 2(-2b) (-3c) + 2 (-3c) (a)
= a2 + 4b2 + 9c2 – 4ab + 12bc – 6ac.

Question 2:
We know:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
(i) (2a – 5b – 7c)2
= (2a)2 + (-5b)2 + (-7c)2 + 2 (2a) (-5b) + 2 (-5b) (-7c) + 2 (-7c) (2a)
= 4a2 + 25b2 + 49c2 – 20ab + 70bc – 28ac.
(ii) (-3a + 4b – 5c)2
= (-3a)2 + (4b)2 + (-5c)2 + 2 (-3a) (4b) + 2 (4b) (-5c) + 2 (-5c) (-3a)
= 9a2 + 16b2 + 25c2 – 24ab – 40bc + 30ac. Question 3:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (-4z)2 + 2 (2x) (3y) + 2(3y) (-4z) + 2 (-4z) (2x)
= (2x + 3y – 4z)2

Question 4:
9x2 + 16y2 + 4z2 – 24xy + 16yz – 12xz
= (-3x)2 + (4y)2 + (2z)2 + 2 (-3x) (4y) + 2 (4y) (2z) + 2 (2z) (-3x)
= (-3x + 4y + 2z)2.

Question 5:
25x2 + 4y2 + 9z2 – 20xy – 12yz + 30xz
= (5x)2 + (-2y)2 + (3z)2 + 2(5x) (-2y) + 2(-2y) (3z) + 2(3z) (5x)
= (5x – 2y + 3z)2

Question 6:
(i) (99)2
= (100 – 1)2 = (100)2 – 2(100) (1) + (1)2
= 10000 – 200 + 1
= 9801.
(ii) (998)2
= (1000 – 2)2
= (1000)2 – 2 (1000) (2) + (2)2
= 1000000 – 4000 + 4
= 996004.

### Exercise 2I

Question 1:
(i) (3x + 2)3
= (3x)3 + (2)3 + 3 × 3x × 2 (3x + 2) = 27x3 + 8 + 18x (3x + 2)
= 27x3 + 8 + 54x2 + 36x.
(ii) (3a – 2b)3
= (3a)3 – (2b)3 – 3 × 3a × 2b (3a – 2b) = 27a3 – 8b3 – 18ab (3a – 2b)
= 27 a3 – 8b3 – 54a2b + 36ab2. Question 2: Question 3:
(i) (95)3
= (100 – 5)3
= (100)3 – (5)3 – 3 × 100 × 5 (100 – 5)
= 1000000 – 125 – (1500 95)
= 857375.
(ii) (999)3
= (1000 – 1)3
= (1000)3 – (1)3 – 3 × 1000 × 1 (1000 – 1)
= 1000000000 – 1 – 3000 (1000 – 1)
= 1000000000 – 1 – (3000 999)
= 997002999.

### Exercise 2J

Question 1:
x3 + 27
= x3 + 33
= (x + 3) (x2 – 3x + 9) Question 2:
8x3 + 27y3
= (2x)3 + (3y)3
= (2x+ 3y) [(2x)2 – (2x) (3y) + (3y)2] = (2x + 3y) (4x2 – 6xy + 9y2).

Question 3:
343 + 125 b3
= (7)3 + (5b)3
= (7 + 5b) [(7)2 – (7) (5b) + (5b)2] = (7 + 5b) (49 – 35b + 25b2)

Question 4:
1 + 64x3
= (1)3 + (4x)3
= (1 + 4x) [(1)2 – 1 (4x) + (4x)2] = (1 + 4x) (1 – 4x + 16x2).

Question 5:
125a3 + [latex]frac { 1 }{ 8 } [/latex]
We know that Let us rewrite Question 6:
216x3 + [latex]frac { 1 }{ 125 } [/latex]
We know that Let us rewrite Question 7:
16x 4 + 54x
= 2x (8x 3 + 27)
= 2x [(2x)3 + (3)3]
= 2x (2x + 3) [(2x)2 – 2x(3) + 32] =2x(2x+3)(4x2 -6x +9)

Question 8:
7a3 + 56b3
= 7(a3 + 8b3)
= 7 [(a)3 + (2b)3]
= 7 (a + 2b) [a2 – a 2b + (2b)2] = 7 (a + 2b) (a2 – 2ab + 4b2).

Question 9:
x5 + x2
= x2(x3 + 1)
= x2 (x + 1) [(x)2 – x (1) + (1)2] = x2 (x + 1) (x2 – x + 1).

Question 10:
a3 + 0.008
= (a)3 + (0.2)3
= (a + 0.2) [(a)2 – a(0.2) + (0.2)2] = (a + 0.2) (a2 – 0.2a + 0.04).

Question 11:
x6 + y6
= (x2)3 + (y2)3
= (x2 + y2) [(x2)2 – x2 (y2)+ (y2)2] = (x2 + y2) (x4 – x2y2 + y4).

Question 12:
2a3 + 16b3 – 5a – 10b
= 2 (a3 + 8b3) – 5 (a + 2b)
= 2 [(a)3 + (2b)3] – 5 (a + 2b)
= 2 (a + 2b) [(a)2 – a (2b) + (2b)2 ] – 5 (a + 2b) = (a + 2b) [2(a2 – 2ab + 4b2) – 5]

Question 13:
x3 – 512
= (x)3 – (8)3
= (x – 8) [(x)2 + x (8) + (8)2] = (x – 8) (x2 + 8x + 64).

Question 14:
64x3 – 343
= (4x)3 – (7)3
= (4x – 7) [(4x)2 + 4x (7) + (7)2] = (4x – 7) (16x2 + 28x + 49).

Question 15:
1 – 27x3
= (1)3 – (3x)3
= (1 – 3x) [(1)2 + 1 (3x) + (3x)2] = (1 – 3x) (1 + 3x + 9x2).

Question 16:
1 – 27x3
= (1)3 – (3x)3
= (1 – 3x) [(1)2 + 1 (3x) + (3x)2] = (1 – 3x) (1 + 3x + 9x2).

Question 17:
We know that Let us rewrite Question 18:
a3 – 0.064
= (a)3 – (0.4)3
= (a – 0.4) [(a)2 + a (0.4) + (0.4)2] = (a – 0.4) (a2 + 0.4 a + 0.16).

Question 19:
(a + b)3 – 8
= (a + b)3 – (2)3
= (a + b – 2) [(a + b)2 + (a + b) 2 + (2)2] = (a + b – 2) [a2 + b2 + 2ab + 2 (a + b) + 4].

Question 20:
x6 – 729
= (x2)3 – (9)3
= (x2 – 9) [(x2)2 + x2 9 + (9)2] = (x2 – 9) (x4 + 9x2 + 81)
= (x + 3) (x – 3) [(x2 + 9)2 – (3x)2]
= (x + 3) (x – 3) (x2 + 3x + 9) (x2 – 3x + 9).

Question 21:
We know that, Therefore,
(a + b)3 – (a – b)3
= [a + b – (a – b)] [ (a + b)2 + (a + b) (a – b) + (a – b)2]
= (a + b – a + b) [ a2 + b2 + 2ab + a2 – b2 + a2 + b2 – 2ab]
= 2b (3a2 + b2).

Question 22:
x – 8xy3
= x (1 – 8y3)
= x [(1)3 – (2y)3]
= x (1 – 2y) [(1)2 + 1 (2y) + (2y)2] = x (1 – 2y) (1 + 2y + 4y2).

Question 23:
32x4 – 500x
= 4x (8x3 – 125)
= 4x [(2x)3 – (5)3]
= 4x [(2x – 5) [(2x)2 + 2x (5) + (5)2] = 4x (2x – 5) (4x2 + 10x + 25).

Question 24:
3a7b – 81a4b4
= 3a4b (a3 – 27b3)
= 3a4b [(a)3 – (3b)3]
= 3a4b (a – 3b) [(a)2 + a (3b) + (3b)2] = 3a4b (a – 3b) (a2 + 3ab + 9b2).

Question 25:
We know that  Question 26:
8a3 – b3 – 4ax + 2bx
= 8a3 – b3 – 2x (2a – b)
= (2a)3 – (b)3 – 2x (2a – b)
= (2a – b) [(2a)2 + 2a (b) + (b)2] – 2x (2a – b) = (2a – b) (4a2 + 2ab + b2) – 2x (2a – b)
= (2a – b) (4a2 + 2ab + b2 – 2x).

Question 27:
8a3 – b3 – 4ax + 2bx
= 8a3 – b3 – 2x (2a – b)
= (2a)3 – (b)3 – 2x (2a – b)
= (2a – b) [(2a)2 + 2a (b) + (b)2] – 2x (2a – b) = (2a – b) (4a2 + 2ab + b2) – 2x (2a – b)
= (2a – b) (4a2 + 2ab + b2 – 2x).

### Exercise 2K

Question 1:
125a3 + b3 + 64c3 – 60abc
= (5a)3 + (b)3 + (4c)3 – 3 (5a) (b) (4c)
= (5a + b + 4c) [(5a)2 + b2 + (4c)2 – (5a) (b) – (b) (4c) – (5a) (4c)]
[∵ a3 + b3 + c3 – 3abc = (a+ b + c) (a2 + b2 + c2 – ab – bc – ca)]
= (5a + b + 4c) (25a2 + b2 + 16c2 – 5ab – 4bc – 20ac).

Question 2:
a3 + 8b3 + 64c3 – 24abc
= (a)3 + (2b)3 + (4c)3 – 3 a 2b 4c
= (a + 2b + 4c) [a2 + 4b2 + 16c2 – 2ab – 8bc – 4ca).

Question 3:
1 + b3 + 8c3 – 6bc
= 1 + (b)3 + (2c)3 – 3 (b) (2c)
= (1 + b + 2c) [1 + b2 + (2c)2 – b – b 2c – 2c]
= (1 + b + 2c) (1 + b2 + 4c2 – b – 2bc – 2c).

Question 4:
216 + 27b3 + 8c3 – 108bc
= (6)3 + (3b)3 + (2c)2 – 3 6 3b 2c
= (6 + 3b + 2c) [(6)2 + (3b)2 + (2c)2 – 6 3b – 3b 2c – 2c 6]
= (6 + 3b + 2c) (36 + 9b2 + 4c2 – 18b – 6bc – 12c).

Question 5:
27a3 – b3 + 8c3 + 18abc
= (3a)3 + (-b)3 + (2c)3 + 3(3a) (-b) (2c)
= [3a + (-b) + 2c] [(3a)2 + (-b)2 + (2c)2 – 3a (-b) – (-b) (2c) – (2c) (3a)]
= (3a – b + 2c) (9a2 + b2 + 4c2 + 3ab + 2bc – 6ca).

Question 6:
8a3 + 125b3 – 64c3 + 120abc
= (2a)3 + (5b)3 + (-4c)3 – 3 (2a) (5b) (-4c)
= (2a + 5b – 4c) [(2a)2 + (5b)2 + (-4c)2 – (2a) (5b) – (5b) (-4c) – (-4c) (2a)]
= (2a + 5b – 4c) (4a2 + 25b2 + 16c2 – 10ab + 20bc + 8ca).

Question 7:
8 – 27b3 – 343c3 – 126bc
= (2)3 + (-3b)3 + (-7c)3 – 3(2) (-3b) (-7c)
= (2 – 3b – 7c) [(2)2 + (-3b)2 + (-7c)2 – (2) (-3b) – (-3b) (-7c) – (-7c) (2)]
= (2 – 3b – 7c) (4 + 9b2 + 49c2 + 6b – 21bc + 14c).

Question 8:
125 – 8x3 – 27y3 – 90xy
= (5)3 + (-2x)3 + (-3y)3 – 3 (5) (-2x) (-3y)
= (5 – 2x – 3y) [(5)2 + (-2x)2 + (-3y)2 – (5) (-2x) – (-2x) (-3y) – (-3y) (5)]
= (5 – 2x – 3y) (25 + 4x2 + 9y2 + 10x – 6xy + 15y).

Question 9: Question 10:
x3 + y3 – 12xy + 64
= x3 + y3 + 64 – 12xy
= (x)3 + (y)3 + (4)3 – 3 (x) (y) (4)
= (x + y + 4) [(x)2 + (y)2 + (4)2 – x × y – y × 4 – 4 × x ]
= (x + y + 4) (x2 + y2 + 16 – xy – 4y – 4x).

Question 11:
Putting (a – b) = x, (b – c) = y and (c – a) = z, we get,
(a – b)3 + (b – c)3 + (c – a)3
= x3 + y3 + z3, where (x + y + z) = (a – b) + (b – c) + (c – a) = 0
= 3xyz [∵ (x + y + z) = 0 ⇒ (x3 + y3 + z3) = 3xyz]
= 3(a – b) (b – c) (c – a).

Question 12:
We have:
(3a – 2b) + (2b – 5c) + (5c – 3a) = 0
So, (3a – 2b)3 + (2b – 5c)3 + (5c – 3a)3
= 3(3a – 2b) (2b – 5c) (5c – 3a).

Question 13:
a3 (b – c)3 + b3 (c – a)3 + c3 (a – b)3
= [a (b – c)]3 + [b (c – a)]3 + [c (a – b)]3
Now, since, a (b – c) + b (c -a) + c (a – b)
= ab – ac + bc – ba + ca – bc = 0
So, a3 (b – c)3 + b3 (c – a)3 + c3 (a – b)3
= 3a (b – c) b (c – a) c (a – b)
= 3abc (a – b) (b – c) (c – a).

Question 14:
(5a – 7b)3 + (9c – 5a)3 + (7b – 9c)3
Since, (5a – 7b) + (9c – 5a) + (7b – 9c)
= 5a – 7b + 9c – 5a + 7b – 9c = 0
So, (5a – 7b)3 + (9c – 5a)3 + (7b – 9c)3
= 3(5a – 7b) (9c – 5a) (7b – 9c).

Question 15:
(x + y – z) (x2 + y2 + z2 – xy + yz + zx)
= [x + y + (-z)] [(x)2 + (y)2 + (-z)2 – (x) (y) – (y) (-z) – (-z) (x)]
= x3 + y3 – z3 + 3xyz.

Question 16:
(x – 2y + 3) (x2 + 4y2 + 2xy – 3x + 6y + 9)
= [x + (-2y) + 3] [(x)2 + (-2y)2 + (3) – (x) (-2y) – (-2y) (3) – (3) (x)]
= (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
= a3 + b3 + c3 – 3abc
Where, x = a, (-2y) = b and 3 = c
(x – 2y + 3) (x2 + 4y2 + 2xy – 3x + 6y + 9)
= (x)3 + (-2y)3 + (3)2 – 3 (x) (-2y) (3)
= x3 – 8y3 + 27 + 18xy.

Question 17:
(x – 2y – z) (x2 + 4y2 + z2 + 2xy + zx – 2yz)
= [x + (-2y) + (-z)] [(x)2 + (-2y)2 + (-z)2 – (x) (-2y) – (-2y) (-z) – (-z) (x)]
= (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
= a3 + b3 + c3 – 3abc
Where x = a, (-2y) = b and (-z) = c
(x – 2y – z) (x2 + 4y2 + z2 + 2xy + zx – 2yz)
= (x)3 + (-2y)3 + (-z)3 – 3 (x) (-2y) (-z)
= x3 – 8y3 – z3 – 6xyz.

Question 18:
Given, x + y + 4 = 0
We have (x3 + y3 – 12xy + 64)
= (x)3 + (y)3 + (4)3 – 3 (x) (y) (4)
= 0.
Since, we know a + b + c = 0 ⇒ (a3 + b3 + c3) = 3abc

Question 19:
Given x = 2y + 6
Or, x – 2y – 6 = 0
We have, (x3 – 8y3 – 36xy – 216)
= (x3 – 8y3 – 216 – 36xy)
= (x)3 + (-2y)3 + (-6)3 – 3 (x) (-2y) (-6)
= (x – 2y – 6) [(x)2 + (-2y)2 + (-6)2 – (x) (-2y) – (-2y) (-6) – (-6) (x)]
= (x – 2y – 6) (x2 + 4y2 + 36 + 2xy – 12y + 6x)
= 0 (x2 + 4y2 + 36 + 2xy – 12y + 6x)
= 0.

NCERT SolutionsMathsScienceRD Sharma

Complete RS Aggarwal Solutions Class 9

If You have any query regarding this chapter, please comment on below section our team will answer you. We Tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share alarity.in to your friends.

Best of Luck For Your Future!!

RS Aggarwal Solutions Class 9 Chapter 2 Polynomials Reviewed by Admin on November 15, 2020 Rating: 5